Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Georges, Marc P; Verrier, Nicolas; Georgakoudi, Irene (Ed.)
-
Andrews, David L; Bain, Angus J; Ambrosio, Antonio (Ed.)
-
Modes of a dielectric cylindrical waveguide are characterized by three numbers: azimuthal numberm, radial number,s, and a continuous propagation constantβ.1The azimuthal number determines the field dependence of the azimuthal angleφof the cylindrical coordinate system with the polar axis along the axis of the cylinder in the form of exp (imφ). The radial number characterizes the behavior of the field in the radial direction and in an ideal cylinder is given by a cylindrical Bessel functionJm(κm,sr). Discrete values of the parameterκscharacterizing the radial dependence of the field is determined by Maxwell boundary conditions. The propagation constantβdescribes the propagation of the mode along the axis of the fiber (Z-axis of the cylindrical coordinate system).more » « less
-
Optical Fabry–Perot cavity with a movable mirror is a paradigmatic optomechanical system. While usually the mirror is supported by a mechanical spring, it has been shown that it is possible to keep one of the mirrors in a stable equilibrium purely by optical levitation without any mechanical support. In this work, we expand previous studies of the nonlinear dynamics of such a system by demonstrating a possibility for mechanical parametric instability and the emergence of the “phonon laser” phenomenon.more » « less
-
We experimentally demonstrate and numerically analyze large arrays of whispering gallery resonators. Using fluorescent mapping, we measure the spatial distribution of the cavity ensemble’s resonances, revealing that light reaches distant resonators in various ways, including while passing through dark gaps, resonator groups, or resonator lines. Energy spatially decays exponentially in the cavities. Our practically infinite periodic array of resonators, with a quality factor (Q) exceeding 107, might impact a new type of photonic ensembles for nonlinear optics and lasers using our cavity continuum that is distributed, while having high-Qresonators as unit cells.more » « less
An official website of the United States government
